CLASS- XII

Holiday Homework- Autumn Break

Physics

- 1. Search about the largest telescope in the world. Why a telescope is made so huge?
- 2. Objective of a microscope is small and eyepiece is large in aperture while objective of a telescope is large and eyepiece is small. So, can we use a microscope as a telescope from opposite side? Explain your answer.
- 3. Write a short note about a Cassegrain telescope. How is it better than refracting telescope.

Chemistry

A. DESCENT IN HALOALKANE SERIES.

- i) Convert chloroethane into chlorobutane
- ii) Convert chloropropane into chlorobutane
- **B. ASCENT IN HALOALKANE SERIE**

Convert chloropropane into chloroethane.

NOTE: USE ASCENDING AND DESCENDING SERIES CONVERSION TRICK SEND IN WATSAPPP GROUP.

Biology

- 1. Collect the Information about RT-PCR technique being used to detect COVID-19, Write the findings as under:
 - a. Principle Involved
 - b. Methodology
 - c. Reliability of the test
- 2. Observe the various types of Population interactions in your immediate surroundings and write one example of each.

S.No.	Name of Interaction	Species A	Species B	Comment

Mathematics

INSTRUCTIONS:

- ** Use Ruler, Pencil, Compass and Protractor for constructions.
- ** Do all the work on a notebook of 20 pages.

- 1. Show that the function $f(x) = 4x^3 18x^2 27x 7$ is always increasing in R

2. If
$$\frac{d}{dx}(f(x)) = 4x^3 - \frac{3}{x^4}$$
 such that $f(2) = 0$. Then $f(x)$ is:
(a) $x^4 + \frac{1}{x^3} - \frac{129}{8}$ (b) $x^3 + \frac{1}{x^4} + \frac{129}{8}$ (c) $x^4 + \frac{1}{x^3} + \frac{129}{8}$ (d) $x^3 + \frac{1}{x^4} - \frac{129}{8}$

- 3. Evaluate $\int \frac{dx}{\sin^2 x \cos^2 x}$.
4. Evaluate $\int \frac{dx}{1+tanx}$.

- 5. If $x = a(2\theta \sin 2\theta)$, $y = a(1 \cos 2\theta)$, find $\frac{dy}{dx}$ at $\theta = \frac{\pi}{3}$ 6. For what value of x, $\begin{bmatrix} 1 & 2 & 1 \\ 2 & 0 & 1 \\ 1 & 0 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ x \end{bmatrix} = 0$.
- 7. Prove that $\tan^{-1}\frac{2}{11} + \tan^{-1}\frac{7}{24} = \tan^{-1}\frac{1}{2}$
- 8. Let Z be set of all integers and R be the relation on z defined as

R= {(a,b): a,b $\in \mathbb{Z}$ and a-b is divisible by 5}. Prove that R is equivalence relation.

- 9. Solve the equation $tan^{-1} 2x + tan^{-1} 3x = \frac{\pi}{4}$
- **10.** Write in the simplest form $\tan^{-1} \left[\frac{a \cos x b \sin x}{b \cos x + a \sin x} \right]$
- 11. Find $\frac{dy}{dx}$ when $y = x^{\log x} + (\log x)^x$
- 12. Differentiate $\tan^{-1} \left[\frac{\sqrt{1+x^2} \sqrt{1-x^2}}{\sqrt{1+x^2} + \sqrt{1-x^2}} \right]$ with respect to x.
- 13. Prove that the curves $x = y^2$ and xy = k cut at right angles if $8k^2 = 1$.

 14. Prove that $\begin{vmatrix} a+b+2c & a & b \\ c & b+c+2a & b \\ c & a & c+a+2a \end{vmatrix} = 2(a+b+c)^3$.
- 15. If x,y,z are different and $\begin{vmatrix} x & x^2 & 1 + x^3 \\ y & y^2 & 1 + y^3 \\ z & z^2 & 1 + z^3 \end{vmatrix} = 0$, show that
- (i) 1+xyz = 0
- (ii) xyz = -1
- 16. Integrate $\int e^x \left(\frac{x^2+1}{(x+1)^2}\right) dx'$
- 17. Find the value of p and q such that function $f(x) = \begin{cases} \frac{1-\sin^3 x}{3\cos^2 x}, & \text{if } x < \frac{\pi}{2} \\ p, & \text{if } x = \frac{q(1-\sin x)}{(-2x)^2} & \text{if } x > \frac{\pi}{2} \end{cases}$

Is continuous at $x = \frac{\pi}{2}$

Evaluate $\int_{0}^{\frac{\pi}{2}} (2\log\sin x - \log\sin 2x) dx$ 18.

19. Evaluate
$$\int \sqrt{\cot x} + \sqrt{\tan x} dx$$

- 20. An open box with a square base is to be made out of a given quantity of cardboard of area c². Show that the maximum volume of the box is $\frac{c^3}{6\sqrt{3}}$
- 21. Prove that the volume of the largest cone that can be inscribed in a sphere of radius R is 8/27 of the volume of sphere.

22. Find
$$A^{-1}$$
 where $A = \begin{bmatrix} 1 & 2 & -3 \\ 2 & 3 & 2 \\ 3 & -3 & -4 \end{bmatrix}$ hence solve the system of equation
$$x + 2y - 3z = -4;$$

$$2x + 3y + 2z = 2;$$

$$3x - 3y - 4z = 11.$$

Autumn Holiday Homework Subject- Computer Science

Class-XII

Q: Write an interactive file program to create a simple library management software.

Modules of the program are:

- 1. Adding books details
- 2. Display the book details
- 3. Delete any record
- 4. Update record of books
- 5. Issue of books with details and keep the record in separate file.